Q. P. Code00008242

(Time:z% hours)
[Marks: 75]
Please check whether you have got the right question paper.
N. B.: (1) All questions arecompulsory
(2) Makesuitable assumptionsvherever necessary argtate the assumptionsnade.
(3) Answers to thesame questiormust bewritten together.
(4) Numbers to theight indicatemarks
(5) Drawneat labeled diagramsvherevernecessary
(6) Use oNon-programmablecalculatoris allowed.

1 Attempt any threeof the following:
a Write down advaimages and disadvantages of procedure oriented language.
PPL involves coding instructions that a computer executepertacular order . the language
makes it easy to debug different procedures in isolation.
It is also easy to read the code loenmaking ieasy to change a pcular procedure.
Easy location of error in program
Easy understanding of program code.
Execution of program is faster.
Disadvantages
1. Complex coding
2. No security due to use of pointers
3. gives more importance to instruction thalata
4. For global variables declared program becomes junky.
5. the need to change larger portion of the code during porting and inability to use the
original code on a different application.
6. not easy tanaintain.
Procedural languages are easierearin and use.
Procedural languages executes quickly.
Procedural languages reduce amount of overhead during runtime.
b Explain object oriented development.

Unlike the traditional methodology (Function-Oriented Programming -FOP), Object-Oriented
Programming emphasizes on the data rather than the algorithm. In OOPs, data is compartmentalized or
encapsulated with the associated functions (that operate on it) and this compartment or capsule is
called an objecr. In the OO approach, the problem is divided into objects, whereas in FOP the problem
is divided into functions. Although, both approaches adopt the same philosophy of divide and con-
quer, OOP conquers a bigger region, while FOP is content with conquering a smaller region. OOP
contains FOP and so OOP can be referred to as the super set of FOP (like C++, which is a supersetof C) -
and hence, it can be concluded that OOP has an edge over FOP.

¢ Write down benefits of using object oriented programming.

We perceive the world around us as being made up of objects and the brain arranges this information
into chunks (groups). OO design uses objects in a programming language. which aids in trapping an
existing pattern of human thought into programming.

Since the objects are autonomous entities and share their responsibilities only by executing meth-
ods relevant to the received messages, cach object lends itself to greater modularity. Cooperation
among different objects to achieve the system operation is done through exchange of messages. The
independence of each object eases development and maintenance of the program.

Information hiding and data abstraction increase reliability and help decouple the procedural and
representational specification from its implementation. Dynamic binding increases flexibility by permit-
ting the addition of a new class of objects without having to modify the existing code. Inheritance
coupled with dynamic binding enhances the reusability of a code, thus increasing the productivity of
a programmer.

Many OO languages provide a standard class library that can be extended by the users, thus saving
a lot of coding and debugging effort. Reducing the amount of code simplifies understanding and thus
allows to build reliable programs. Code reuse is possible in conventional languages as well, but OO
languages greatly enhance the possibility of reuse.

Ohbject-oriented design involves the identification and implementation of different classes of ob-
jects and their behavior. The objects of the system closely correspond and relate in a one-to-one
manner to the objects in the real world. Thus, it is easier to design and implement the system consisting

of objects. as observed and understood by the brain.
Object orientation provides many other advantages in the production and maintenance of software:

shorter development times, high degree of code sharing and malleability (can be moulded to any shape.
These advantages make OOPs an important technology for building complex software systems.

Write a short note on Data abraction and data encapsulation.

Data encapsulation

Encapsulation 1s a mechanism that associates the code and the data 1t manipulates and Keeps them sate
from external interference and misuse. Creating new data types using encapsulated-items, that are well
suited to an application to be programmed, is known as data abstraction. The data types created by the
data abstraction process are known as Abstract Data Types (ADTs). Data abstraction is a powerful
technique, and its proper usage will result in optimal, more readable, and flexible programs.

Data Structure

b

Y

Operations
(Functions)

The use of encapsulation in protecting the members of a class from unauthorized acce
good programming practice; it enforces the seperation between the specification and
implementation of abstractlata types and it enables the debugging of programs easily.
The wrapping up of data and functionz into a single unit (called class) is known as
encapsulation. Data encapsulation is the most striking feature of a class. The data is not
accessible to the outside world, and only those functions which are wrapped in the class can
access it. These functions provide the interface between the object's data and the program.
This insulation of the data from direct access by the program is called date hiding or
information hiding.
Data abstraction
Abstraction refers to the act of representing essential features without including the
background details or explanations. Classes use the concept of abstraction and are defined
as a list of abstract aftribufes such as size, weight and cost, and functions to operate on
these attributes. They encapsulate all the essential properties of the objects that are to be
created. The attributes are sometimes called data members because they hold information.
The functions that operate on these data are sometimes called methods or member functions.

e Explain dynamic binding with example. Give proper example.
Dynamic Binding

Binding refers to the tie-up of a procedure call to the address code to be executed in response to the call.
Dynamic binding (also called late binding) means that the code associated with a given procedure cail
is not known until its call at run-time. For example, consider a graphics application (see Figure 1.17), in
which the class Figure, contains a procedure draw () . By inheritance, every graphics primitive in th:s
diagram has a procedure draw (). The draw () algorithm is, however, unique to each graphical shap:,
and so the draw () procedure will be redefined in each class that defines a graphic primitive. To redraw
the entire graphics window, the following code will suffice:
for i = 1 to number_of_shapes do
ptr_to_figure[i]->draw();

At each pass through the loop, the code matching the dynamic type of ptr_to_figure[i] will be
called. Even if additional kinds of shapes are added to the system, this code segment will still remain
unchanged. This is, in contrast to the traditional case/switch statement design of a program.

Another example could be that of an operation print in aclass File. Different methods could be
aplemented to print ASCII files, binary files, digitized picture files, etc. All these methods logically
perform the same task - printing a file; thus the corresponding generic operation is print. However,
the individual methods may each be implemented by a different code.

f. What is inheritance? Explain with example the concept of multiple inheritances.
Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of
another class. It supports the concept of kierarchical classification. For example, the bird
'robin' is a part of the ¢lass ‘flying bird’ which is again a part of the class ‘bird'. The principle
behind this sort of division is that each derived class shares common characteristics with
the class from which it is derived as illustrated in Fig.

In OOP, the concept of inheritanee provides the idea of rewsability. This means that we
can add additional features to an existing class without modifying it. This is possible by
deriving a new class from the existing one. The new class will have the combined features of
both the classes. The real appeal and power of the inheritance mechanism is that it allows
the programmer to reuse a class that is almost, but not exactly, what he wants, and to tailor
the class in such a way that it does not introduce any undesirable side-effects into the rest
of the classes.

Mote that each sub-class defines only those features that are unique to it. Without the
of classification, each class would have to explicitly include all of its features.

Bird
Aftributes !
| Feathers |
| Lay eggs K
. "
I FI}'II‘lg Bird | :N-:_:unr-!,-'ir-;‘; Bird |

Aftrbules

Attribules

.-r'f .. ; \'!-.

Panguin | Koiwi

Attributes | | Attributes

2 Attempt any threeof the following:

a What is friend function? Write a friend function to display mark sheet of the F. Y. B. Sc
student.
The functions that are declared with the keyword friend are called friend function. a
function canbe a friend to multiple classes.
A scope of friend function is not limited to a class in which it has been declared as a fri
A friend function cannot be called by the object of that class.
Unlike class member function it can not access class menadlrexsly.
It can be either declared in private or public part of class without affecting its meaning.
Friend functions permits an exception to the rules of data encapsulation. the friend key
allow a function or all functions of other class to manipeltite private members of origing
class. all member functions of one class can be friend functions of another class. 3
Friend function to display mark sheet of the F. Y. B. Sc. IT student. 2

b What is class? Explain with example how objects are passed as argument to member
function and objects are returned from member function.
Class is a basic language construct of C++ for creating the user defined data type.
They aresyntacticallyan extensio of structures. 1
Objects can be passed as an argument to member function in three different ways
1. passby-value
2. passby-reference
3. passhy-pointer
Explanation of anyree type with example.
Returning objectfrom member functiorexample

¢ Write a C++ prograro design a classcourseFor reading and displaying the course
information, the getinfo() and displaylnfo() methods will be used respectively. The getl
will be private method. Write down C++ program to implement the class.

d What is inline functio Explain with example.
Function execution involves the overhead of jumping to and from the calling statement. Trading of this
overhead in execution time is considerably large whenever a function is small, and hence in such cases,
inline functions can be used. A function in C++ can be treated as a macro if the keyword inline
precedes its definition. The syntax of representing the inline function is shown in Figure

Keyword, function qualifier

L

inline ReturnType FunctionName (Parameters)
{

// body of a main function
}

Example: An inline function to find square of a number is as foilows:

inline float square(float x)
{
X = X * x;
return{ x };
}
The significant feature of inline functions is that there is nn explicit function call; the function
body is substituted at the point of inline function call. Thereby, the runtims overhead for function

e What is use of constructor? Explain with example parameterized constructor.
A constructor is a special member function whose main operation is to allocate the required resources

such as memory and initialize the objects of its class. A constructor is distinct from other member

functions of the class, and 1t has the same name as its class. It is executed automatically when a class is
instantiated (object is created). It is generally used to initialize object member parameters and allocate
the necessary resources to the object members. The constructor has no return value specification (not

even void). For instance, for the class Bag, the constructor is Bag: : Bag ().
Constructors can be invoked with arguments, just as in the case of functions. The argument list can be

specified within braces similar to the argument-list in the function. Constructors with arguments are
called parameterized constructors. The distinguishing characteristic is that the name of the construc-
tor functions have to be the same as that of its class name. In the earlier program newbag.cpp,
another constructor with arguments could have been provided with one integer value to initialize the
data members ItemCount and contents([] . The syntax of parameterized constructors and their
access is shown :

class Test

{

aaaaa

}i

Test tl1(2}); : —,. 2 is passed as parameter
Test t2=3; ——

3 is passed as parameter
f. Write a C++ program to demonstrate the use of constructor and destructor.

3 Attempt any threeof the following:

a What is function overloading? Explain with example.
Function polymorphism, or function overloading is a concept that allows multiple functions to share
the same name with different argument types. Function polymorphism implies that the function defini-
tion can have multiple forms. Assigning one or more function body to the same name is known as
Junction overloading or function name overloading.

The program swapd . cpp illustrates the need for function overloading. It has muitiple functions
for swapping numbers of different data types but with different names.

// swapd.cpp: multiple swap functicns with different names
#include <iostream.h>
void swap_char{ char & x, char & v)
{
char t; // temporary used in swapping

tE = x;
X = ¥;
v = &
float c, d:

cout << "Enter two floats <c, d=: *;

cin => ¢ »>> d;

swap(¢, d); // compiler calls swap(float &a, float &b);
cout << "On swapping <c, d»: " << c << " " =< d;

b What is operator overloading? Write down the rules for operator overloading.

15

The operators such as +, -, +=, >, >>, eic., are designed to operate only on standard data types in
structured programming languages such as C. The + operator can be used to perform the addition
operation on integer, floating-point, or mixed data types as indicated in the expression (a+b). In this
expression, the data type of the operands a and b on which the + operator is operating, is not men-
tioned explicitly. In such cases, the compiler implicitly selects suitable addition operation (integer,
floating-point, double, etc.,) depending on the data type of operands without any assistance from the
programmer. Consider the following statements:

int a, b, ¢;
float x, ¥, Z;

¢ =a + b; // 1: integer addition and assignment
Z =K+ Y] // 2: floating-point addition and assignment
*x = a + b; // 3: integer addition apnd floating point assignment

The operators = and + behave quite differently in the above statements: the first statement does integer
addition and assigns the result to c, the second performs floating-point addition and assigns the result
to z, and the last performs integer addition and assigns the result to the floating-point variable x. It
indicates that, the + operator is overloaded implicitly to operate on operands of any standard data type
supported by the language. Unlike C, in C++, such operators can also be overloaded explicitly to
operate on operands of user-defined data types. For instance, the statement

c3 = AddComplex({ cl, c2)}
performs the addition of operands <1 and 2 belonging to the user defined data type and assigns the
result to «3 (which 1s also operand of the user defined data type). In C++, by overloading the + operator,
the above statement can be changed to an easily readable form:

c: = ¢l + e2;
It tries to make the user-defined data types behave in a manner similar (and have the same look and feel)
to the built-in data types, thereby allowing the user to redefine the language itself. Operator overload-
ing, thus allows to provide additional meaning to operators such as +,*, >=,+=¢tc., when they are
applied to user defined data types. It allows the user to program (develop solution 10) the problems as
perceived in the real world.

Although it looks simple to redefine the operators, there are certain restrictions and
limitations in overloading them. Some of them are listed below:

1. Omnly existing operators can be overloaded. New operators cannot be created,

2. The overloaded operator must have at least one operand that is of user-defined
type.

3. We cannot change the basic meaning of an operator. That is to say, we cannot
redefine the plus(+) operator to subtract one value from the other.

4. Owverloaded operators follow the syntax rules of the original operators. They cannot
be overridden.

5. There are some operators that cannot be overloaded.

6. 'We cannot use friend functions to overload certain operators. -
| However, member functions can be used to overload them.

7. Unary operators, overloaded by means of a member funetion, take no explicit argu-
ments and return no explicit values, but, those overloaded by means of a friend
function, take one reference argument (the object of the relevant class),

8. Binary operators overloaded through a member function take one explicit argu-
ment and those which are overloaded through a friend function take two explieit
arguments.

8. When using binary operators overloaded through a member function, the left hand
operand must be an ohject of the relevant class.

10. Binary arithmetic operators such as +, -, ¥, and / must explicitly return a value,
They must not attempt to change their own arguments.

¢ How binary operators are overloadedl?rite a C++ program to overload binary operator

The concebt of ovei'loadin:g pna:}r- operaml:s api;:ties also to the ‘bina{-}‘rt ﬁperatdrs, The s}max for
overloading a binary operator is shown in Figure

Function return type: primitive, void, or user defined

Keyword
— Operator to be Overloaded

Argument to Operator.
Function

——— P

ReturnType operator OperatorSymbol (arg)

{

// body of Operator function
}

Syntax for overloading a binary operator

The binary overloaded operator function takes the first object as an implicit operand and the seconc
operand must be passed explicitly. The data members of the first object are accessed without using the

dot ﬂpcra_mr whereas, the second argument members can be accessed using the dot operator if the
argument is an object, otherwise it can be accessed directly. Note that, the overloaded binary operator
function is a member function defined in the first object’s class.
// complexl.cpp: Addition of Complex Numbers
#include <iostream.h>

class complex

{

private:

float real; // real part of complex number

float imag; // imaginary part of complex number
public:

complex() /f no argument constructor

{

real = imag = 0.0;
}

void getdatal()

{
cout << "Real Part ? *;
cin >> real;
cout << “"Imag Part ? *;
cin »>> imag;

}
complex AddComplex(complex c2); // Add complex numbers
void outdata(char *msg) // display complex number

{

cout << endl << msg;

cout << * (" << real;
cout << ", " << imag =< ")";

}i
// adds default and c2 complex objects

complex complex: :AddComplex{ complex c2)
{

complex temp; // object temp of complex class
temp.real = real + c2.real; // add real parts

temp.imag = imag + c2.imag; // add imaginary parts

return(temp }; /{ return complex object

}
void main()
{
complex cl, c2, c3; // el, e2, c3 are object of complex class
cout << "Enter Complex Number cl .." << endl;
cl.getdatal();
cout << “Enter Complex Number ¢2 .." << endl;
c2.getdatal);
c3 = cl.AddComplex!(c2); // add cl and c2 and assign the result to ¢3
c3.outdata("c3 = cl.AddComplex({ ¢c2 }): "};
}

d What is method overriding? Explain with example.
A class can have multiple member functions (but not data members) gtsame name
as long as they differ in terms of signaturghis feature is called as method overloading.
Example program.
e Explain with example abstract class.
Abstract classes (classes with atleast one virtual function) can be used as a framework upon which new
classes can be built to provide new functionality. A framework is a combination of class libraries (set of
cooperative classes) with predefined flow of control. It can be a set of reusable abstract classes and the
programmer can extend them. For instance, abstract classes can be easily tuned to develop graphical
editors for different domains like artistic drawing, music composition, and mechanical CAD. Abstract
classes with virtual functions can be used as an aid to debugging. Suppose, it is required to build a
project consisting of a number of classes, possibly using a large number of programmers. It is necessary
to make sure that every class in the project has a common debugging interface. A good approach is 1o
create an abstract class from which all other classes in the project will be inherited. Since any new
classes in the project must inherit from the base class, programmers are not free to create a different
interface. Therefore, it can be guaranteed that all the classes in the project will respond to the same
debugging commands.

++ debug.h: Abstract class for debugging
#1nclude <iostream.h>
class debuggable
public:
virtual void dump/(}
{
cout<< "debuggable error:no dump() defined feor this class"<<endl;

}

If someone derives a new class from the class debuggable and does not redefine dump (7. 1t
warns when the user tries to dump any object of that new class, because the base class version of
dump () will be used. A few classes derived from the class debuggable are listed in the program
dbgtest.cpp, for testing the debuggable class.

/ / dbgtest.cpp: testing of debuggable class
#¢include "debug.h*
class X: public debuggable
{
int a, b, <;
public:
¥({ int aa = 0, int bb = 0, int cc = 0)
{
a = aa; b= hb; ¢ = cc;
}
// other implementation of dump
void dump()
{
cout << "a=" << g << " h=" << h << * ¢=" << ¢ << endl;
}
Yi
class Y: public debuggable
{
int i, j, k;
public:
¥Y(int ii = 0, int 33 = 0, int kk = 0)
{
i=41ii; 3 = j33: k = kk;
}
// other implementation of dump
void dump()
{
cout << "i=" << [=< " j=" << j << * k=" << k << endl;
)
|
class Z: public debuggable
{
int p, 9. T
public:
Z{ int pp = 0, int gg = 0, int rr = 0 }

}:

void main()

{
X =(1, 2, 3
Yvy(2, 4, 5
2 z;
x.dump () ;
y.dump () ;
z.dump(});
f/ you can treat x, ¥y, and z as members of the class debuggable

debuggable *dbg(3];

dbg[0] = &x;
dbg[l] = &y;
dbg(2] = &z;

cout<< "Dumping through passing the same message to all objects...\n*;
for({ int 1 = 0; 1 < 3; i++)
dbg[i]->dump();

f. Explain virtual destructor. Give suitable example.
Just like declaring member functions as virtual, destructors can be declared as virtual, whereas con-

structors cannot be virtual. Virtual destructors are controlled in the same way as virtual functions.
When a derived object pointed to by the base class pointer is deleted, destructor of the derived class as
well as destructors of all its base classes are invoked. It is illustrated in the program family3.cpp. Ir
this program, if the destructor is made as non-virtual destructor in the base class. only the base class’s
destructor is invoked when the object is deleted.

AnyExampldllustrating the ame.

4 Attempt any threeof the following:

a Can private members of a base class are inheritable? Justify.
No.

b Explain with example multilevel inheritance.

A

o

[

C

Multilevel inheritance

Example.

¢ Explain how a base class is derived in public andtprimade.
When the access specifier of the base class in the derived class definition is public , th
class is publicly inherited. in this case the access specifier of the base class members
the same in the derived class. that is public memtethe base class becomes public
members of the derived class and protected members of the base class becomes prot:
members of the derived clas&/hen a base class is publicly inherited, the objects of the
the derived class camnly access the puldimembers of the base claaad protected
members can be accessed by member functions, friend class and friend functions of tt

10

15

derived class.

Syntax andxample.

When the access specifier of the base class in the derived class definition is private , tl
base class is privately inherited. In this case both the public and protected members of
base class becomes private members of the derived class and private members of the
class is not inheritable in derived clagghen a base class is privat@iperited, the objects
of the derived of the derived class cannot access the public and protected the member
the base class. however these members can be aeddgsmember functions, friend class
and friend functions of the derived class.

SyntaxExampe.

d Write a C++ program to implement following hierarchy.

Institute

Student Course

Class

e What is exception? Explain exceptions handling mechanism?
Exception refers to unexpected condition in program.
When a program encounters an abnormal situation for which it is not designed, the user may transfer
control to some other part of the program that is designed to deal with the problem. This is done by
throwing an exception. The exception-handling mechanism uses three blocks: try, throw, and catch.
The relationship of these three exception handling constructs called the exception handling model is
shown in Figure 19.1.

The try-block must be followed immediately by a handler, which is acatch block. If an exception is
thrown in the try-block, the program control is transferred to the appropriate exception handler. The
program should attempt to catch any exception that is thrown by any function. Failure to do so could
result in abnormal termination of the program. Though C++ allows an exception to be of any type, it is
useful to make exceptions as objects. The exception object is treated exactly the same way as other
normal objects. An exception carries information from the point where the exception is thrown to the
point where the exception is caught. This information allows the program user to know as to when the
nrogram encounters an anomaly at runtime.

try block

Perform operation which may throw or
invoke external function if needed

exception
P Invoke function having throw block

throw block

if (failure)
throw object; "
exception

catch block

catches all exceptions thrown from L
within try block or by function
invoked within a try block

.

f. What happen when raised exceptionnst caught by catch block? Explain with suita
example.

11

5 Attempt any threeof the following:

a Explain with example how function templates are used.
Templates provide a mechanism for creating a single function possessing the capability of several
functions,-which differ only in their parameters and local variables data type. Such a function is called
function template. It permits writing one source declaration that can produce mul-tiplc functions differ-
ing only in their data types. The general format of a template function is depicted in Figure A
function generated from a function template is known as template function, which is created by the
compiler internally and is transparent to the user.

Keyword for declaring function template

name of the template data-type

» Function parameters of type
template, primitive or user-defined

e e
template < class Tl, class T2, ..=>
ReturnType FunctionName { Arguments of type Tl and T2, ...)}

{
/{ local wvariables of type Tl, T2, or any other
/{ function body, operating on variables of type T1l, T2
// and other wariables

}
Syntax of function template

The syntax of template function is similar to a normal function, except that it uses variables whose
data types are not known until they are invoked. Such unknown data types (generic data types) are
resolved by the compiler and are expanded to the respective data types (depending on the data type of
actual parameters in a function call statement). A call to a template function is similar to that of a normal
function. It can be called with arguments of any data-type. The complier will create functions internally
without the user intervention, depending on the data types of the input parameters. The function
template for finding the maximum of two numbers is shown below:

template <class T>
T max({ T a, T b)
{
ifia>Db)
return a;
else
return b;
}

The program mswap . cpp illustrates the need for function templates. It defines multiple swap
functions for swapping the values of different data types.

12

// MSwap.cpp: Multiple swap functions
¢include <iostream.h>
void swap({ char & x, char & vy)} // pass by reference
{
char t; // temporary used in swapping

T = X;

x =Y

y = &;
}
void swap(int & x, int & v } // pass by reference
{

int t; // temporary used in swapping

o= ox;

X =¥y

¥y o= £

}
void swap({ float & x, float & v) // pass by reference
{

fleoat t; // temporary used in swapping

Lt =M
X = ¥;
¥y = &

}
void main()
{
char chl, chi;
cout <= "Enter two Characters <=chl, ch2>: *;
cin »> chl »> ch2;
swapl{ chl, ch2); // compiler calls swap(char &a, char &b };
cout << "On swapping <chl, ch2>: * << chl << " " << ch2 << endl;
int a, b;
cout << "Enter two integers <a, b>: *;
cin »» a »>» b;

swapl{ a, b }; // compiler calls swap{ int &a, int &b };
cout << "On swapping <a, b>: " << a << " " << b << endl;
float c, d;

cout << "Enter two floats <c, d>: ";
cin > ¢ > d4d;

swapl(c, 4); [/ compiler calls swap(float &a, float &b }:
cout << "On swapping <c, d>: ®" << c << " * << d;

}

b E)Zplain how compiler calls to a class and functémnplate.
Function Template:

13

A function template is prefixed with the keyword template and a list of template type arguments.
These template-type arguments are called generic data types, since their exact representation (memory
requirement and data representation) is not known in the declaration of the function template. It is

known only at the point of a call to a function template. The syntax of declaring the function template is
shown in Figure 16.1.

template

keyword data types atleast one argument
must be template type

template <class T, ...> V

ReturnType FuncName (arguments)
{

. // body of templa.té function

Figure 16.1: Syntax of function template

The syntax of a function template is similar to normal function except that it uses variables whose
data types are not known until a call to it is made. A call to a template function is similar to that of a
normal function and the parameters can be of any data-type. When the compiler encounters a call to
such functions, it identifies the data type of the parameters and creates a function internally and makes
acall to it. The internally created function is unknown to the user. The program gswap . cpp makes use
of templates and avoids the overhead of rewriting functions having body of the same pattern, but
operating on different data types.

Program:

// gswap.cpp: generic function for swapping
#include <iostream.h>

template <class T>

void swap(T & x, T & ¥) // by reference

{
T t; // template type temporary variable used in swapping
tE = xX;
X = y;
y = £
}
void main ()
{

char chl, ch2;
cout << "Enter two Characters <chl, chi>: *;
cin »> chl »>> ch2;
swap({ chl, ch2 }; // compiler creates and calls swap(char &x, char &y };
cout << "On swapping <chl, ch2>: " << chl << " " << ch2 << endl;
int a, b;
cout << "Enter two integers <a, b>: *;
cin »> a »> b;
swapl(a, b }; // compiler creates and calls swap(int &x, int &y);
cout << "On swapping <a, b>: " << a << " " << b << endl;
float ¢, d;
cout << "Enter two floats <c, d=: ";
cin »> ¢ >> d;
swap({ c, d }; // compiler creates and calls swap(float &x, float &y };
cout << "On swapping <c, d>: " << ¢ << " " << d;

14

In main(), the statement

swap(chl, ch2 };
invokes the swap function with char type variables. When it is encountered by the compiler, it
internally creates a function of type,

swap(char &x, char &y };
The compiler automatically identifies the data type of the arguments passed to the template function
and creates a new function and makes an appropriate call. The process of handling the template func-
tions by the compiler is totally invisible to the user. Similarly, the compiler converts the following calls
‘ swap(a, b); // compiler creates swap(int &x, int &y);

swap(c, d }); // compiler creates swap{ float &x, flocat &y);
into equivalent functions and calls them based on their parameter data types. Theoretically speaking,
all the data types share the same template function swap. However, the myll?- has created three swap
functions operating on char, int, and float.

Class Template:

Similar to functions, classes can also be declared to operate on different data types. Such classes are
called class templates. A class template specifies how individual classes can be constructed similar to
normal class specification. These classes model a generic class which support similar operations for

different data types. A generic stack class can be created, which can be used for storing data of type
integer, real, double, etc.

Syntax:)

The syntax of declaring class templates and defining objects using the same is shown in Figure
The definition of a class template implies defining template data and member functions.

keyword template datatypes T1, T2,...

V-

template <class T1, class T2, ...>
class ClassName

{
// data items of template type T1, T2,
Tl datal;
// functions of template arguments T1, T2,
void funcl (Tl a, T2 &b);
T func2 (T2 *x, T2 *vy);
}i

The prefix template <class T> specifies that a template is being declared, and that a rype-name
T will be used in the declaration. In other words, DataStack is a parameterized class with T as its
generic data type.

Any call to the template functions and classes, needs to be associated with a data type or a class.
The compiler then instantiates a coov of the template function or template class for the data type
specified.
Give Example

¢ Write a C++ program which defines and uses student class template.
d What is file? Write down the stepsrfaanipulating files in C++.

15

