(Time: $2\frac{1}{2}$ hours)

[Marks: 75]

Please check whether you have got the right question paper.

- N. B.: (1) **All** questions are **compulsory**.
 - (2) Make suitable assumptions wherever necessary and state the assumptions made.
 - (3) Answers to the same question must be written together.
 - (4) Numbers to the **right** indicate **marks**.
 - (5) Draw <u>neat labeled diagrams</u> wherever <u>necessary</u>.
 - (6) Use of **Non-programmable** calculator is **allowed**.

1. Attempt <u>any three</u> of the following:

15

a. What is a mathematical model? With the help of a flow chart , explain the of solving an engineering problem?

A mathematical model can be broadly defined as a formulation or equation that expresses the essential features of a physical system or process in mathematical terms. In a very general sense, it can be represented as a functional relationship of the form

$$\frac{\text{Dependent}}{\text{variable}} = f\left(\frac{\text{independent}}{\text{variables}}, \text{parameters}, \frac{\text{forcing}}{\text{functions}}\right)$$

.....1.1

where the dependent variable is a characteristic that usually reflects the behavior or state of the system; the independent variables are usually dimensions, such as time and space, along which the system's behavior is being determined; the parameters are reflective of the

system's properties or composition; and the forcing functions are external influences acting upon the system.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic relationship to large complicated sets of differential equations. For example, on the basis of his observations, Newton formulated his second law of motion, which states that the time rate of change of momentum of a body is equal to the resultant force acting on it. The mathematical

expression, or model, of the second law is the well-known equation

$$F = ma$$
 (1.2)

where $F = \text{net force acting on the body (N, or kg m/s}^2), m = \text{mass of the object (kg), and } a = \text{its acceleration (m/s}^2).}$

b. Create a hypothetical floating-point number set for a machine that stores information using 7-bit words. Employ the first bit for the sign of the number, the next three for the sign and the magnitude of the exponent, and the last three for the magnitude of the mantissa.

Figure 3.8

Solution. The smallest possible positive number is depicted in Fig. 3.8. The initial 0 indicates that the quantity is positive. The 1 in the second place designates that the exponent has a negative sign. The 1's in the third and fourth places give a maximum value to the exponent of

$$1 \times 2^{1} + 1 \times 2^{0} = 3$$

Therefore, the exponent will be -3. Finally, the mantissa is specified by the 100 in the last three places, which conforms to

$$1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} = 0.5$$

Although a smaller mantissa is possible (e.g., 000, 001, 010, 011), the value of 100 is used because of the limit imposed by normalization [Eq. (3.8)]. Thus, the smallest possible positive number for this system is $+0.5\times2^{-3}$, which is equal to 0.0625 in the base-10 system. The next highest numbers are developed by increasing the mantissa, as in

$$0111101 = (1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}) \times 2^{-3} = (0.078125)_{10}$$

$$0111110 = (1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}) \times 2^{-3} = (0.093750)_{10}$$

$$0111111 = (1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^{-3} = (0.109375)_{10}$$

Notice that the base-10 equivalents are spaced evenly with an interval of 0.015625.

At this point, to continue increasing, we must decrease the exponent to 10, which gives a value of

$$1 \times 2^1 + 0 \times 2^0 = 2$$

The mantissa is decreased back to its smallest value of 100. Therefore, the next number is

$$0110100 = (1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3}) \times 2^{-2} = (0.125000)_{10}$$

This still represents a gap of 0.125000 - 0.109375 = 0.015625. However, now when higher numbers are generated by increasing the mantissa, the gap is lengthened to 0.03125,

$$\begin{array}{l} 0110101 = \left(1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}\right) \times 2^{-2} = \left(0.156250\right)_{10} \\ 0110110 = \left(1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}\right) \times 2^{-2} = \left(0.187500\right)_{10} \\ 0110111 = \left(1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}\right) \times 2^{-2} = \left(0.218750\right)_{10} \end{array}$$

This pattern is repeated as each larger quantity is formulated until a maximum number is reached,

$$0011111 = (1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^{3} = (7)_{10}$$

c.	Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up
	with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively, compute
	(i) the true error and (ii) the true percent relative error for each case.
	Solution.

(a) The error for measuring the bridge is

$$E_t = 10,000 - 9999 = 1 \text{ cm}$$

and for the rivet it is

$$E_t = 10 - 9 = 1 \text{ cm}$$

(b) The percent relative error for the bridge is [Eq. (3.3)]

$$\epsilon_{r} = \frac{1}{10.000}100\% = 0.01\%$$

and for the rivet it is

$$\epsilon_r = \frac{1}{10}100\% = 10\%$$

Thus, although both measurements have an error of 1 cm, the relative error for the rivet is much greater. We would conclude that we have done an adequate job of measuring the bridge, whereas our estimate for the rivet leaves something to be desired.

d. Use zero- through fourth-order Taylor series expansions to approximate the function

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

from $x_i = 0$ with h = 1. That is, predict the function's value at $x_{i+1} = 1$.

Because we are dealing with a known function, we can compute values for f(x) between 0 and 1. The results indicate that the function starts at f(0) = 1.2and then curves downward to f(1) = 0.2. Thus, the true value that we are trying to predict

The Taylor series approximation with n = 0 is

 $f(x_{i11}) = 1.2$

Compute the condition number for

$$f(x) = tanx for \tilde{x} = \frac{\pi}{2} + 0.1 \left(\frac{\pi}{2}\right)$$

$$f(x) = \tan x \text{ for } \tilde{x} = \frac{\pi}{2} + 0.1 \left(\frac{\pi}{2}\right)$$
$$f(x) = \tan x \text{ for } \tilde{x} = \frac{\pi}{2} + 0.01 \left(\frac{\pi}{2}\right)$$

	Solution. The condition number is computed as	
	Condition number = $\frac{x(1/\cos^2 x)}{\tan x}$	
	$\tan x$ For $x = \pi/2 + 0.1(\pi/2)$,	
	Condition number = $\frac{1.7279(40.86)}{-6.314} = -11.2$	
	Thus, the function is ill-conditioned. For $x = \pi/2 + 0.01(\pi/2)$, the situation is even worse:	
	Condition number = $\frac{1.5865(4053)}{-63.66} = -101$	
	For this case, the major cause of ill conditioning appears to be the derivative. This makes sense	
	because in the vicinity of $\pi/2$, the tangent approaches both positive and negative infinity.	
f.	Explain blundars, formulation arrows and data uncertainty	
1.	Explain blunders, formulation errors and data uncertainty.	
	Blunders:	
	Blunders can occur at any stage of the mathematical modeling process and can contribute to all the other components of error. They can be avoided only by sound	
	knowledge of fundamental principles and by the care with which you approach and design your solution to a problem.	
	Blunders are usually disregarded in discussions of numerical methods. This is no	
	doubt due to the fact that, try as we may, mistakes are to a certain extent unavoidable. However, we believe that there are a number of ways in which their occurrence can be	
	minimized.	
	Formulation Errors:	
	Formulation, or model, errors relate to bias that can be ascribed to incomplete mathe-	
	matical models. An example of a negligible formulation error is the fact that Newton's second law does not account for relativistic effects.	
	seedid law does not account for relativistic circles.	
	Data Uncertainty:	
	Errors sometimes enter into an analysis because of uncertainty in the physical data upon	
	which a model is based. For instance, suppose we wanted to test the falling parachutist model by having an individual make repeated jumps and then measuring his or her	
	velocity after a specified time interval. Uncertainty would undoubtedly be associated with these measurements, since the parachutist would fall faster during some jumps than	
	during others. These errors can exhibit both inaccuracy and imprecision. If our instru-	
	ments consistently underestimate or overestimate the velocity, we are dealing with an inaccurate, or biased, device. On the other hand, if the measurements are randomly high	
	and low, we are dealing with a question of precision.	
	Measurement errors can be quantified by summarizing the data with one or more well-chosen statistics that convey as much information as possible regarding specific	
	characteristics of the data. These descriptive statistics are most often selected to represent (1) the location of the center of the distribution of the data and (2) the degree of spread	
	of the data. As such, they provide a measure of the bias and imprecision, respectively.	
2.	Attempt <u>any three</u> of the following:	15
a.	Find the roots of the equation	
	$x^3 - 12.2x^2 + 7.45x + 42 = 0$	
A	between 11 and 12 using Regula-Falsi method correct upto 4 decimal places.	
11	$c = \frac{a f[b] - b f[a]}{a}$	
	f[b] - f[a]	
	The approximate value of root is 11.20	
b.	Find the roots of the equation $x \tan x = 1$	
	near 4 using Newton Raphson method correct up to 4 decimal places.	
1		

A	Use the form	mula			f(x))		
				x_{n+1}	$=x_n-\frac{f(x)}{f'(x)}$	<u>)</u>		
) (x	,		
	Answer 3.4							
Э.	Use the Sec	ant method	to find a	solution to	x = cosx c	orrect up to 4 d	lecimal places.	
	Use the form	mula:						
			- X(1)					
	$\mathbf{x}_{i+1} = \mathbf{x}_i$ -	f(x _i) * (x _i			i = 1,2,3			
		$f(x_i) - f(x_i)$	(i-1)					
	Answer: 0.7	739085						
i.	_	2 = 0.3010,	$\log 3 = 0$	0.4771, log	g 5 = 0.6990	and $\log 7 = 0$.	8451. Find the	e value of
<u> </u>	log 47.	40=1+log4=	1 + 21og2-	-1 6020-v	`			
	, ,	-1+10g4 -2=log7+log		-	J			
	, ,	5=2log3+lo	_	•				
	X=47,log47	7=	=?=y	•				
	, ,	9=2log7=1.	•					
		$60=1+\log 5=1$	•		(1 477			
	Applying Lagrange's interpolation formula (where $x=47$)							
	$\log 47 = \frac{(x-x1)(x-x2)(x-x3)(x-x4)}{(x0-x1)(x0-x2)(x0-x3)(x0-x4)}y0 + \frac{(x-x0)(x-x2)(x-x3)(x-x4)}{(x1-x0)(x1-x2)(x1-x3)(x1-x4)}y1 +$							
	-	$\frac{(x-x_0)(x-x_0)(x-x_0)}{(x_0-x_0)(x_0-x_0)}$	(1)(x-x3)(x	$\frac{(-x4)}{(-x-1)}$ y2				
	(x-	(x2-x0)(x2-x)(x-x1)(x-x)	$(x_1)(x_2-x_3)(x_2)(x-x_4)$	$(x2-x4)^{3}$	$(x-x_1)(x-x_2)$	$(2)(x-x_3)$		
				$\frac{1}{4}$ $y_3 + \frac{1}{(x_4 - x_1)^2}$	(x-x)(x-x)(x-x) (x-x)(x-x) (x-x)(x-x)	$\frac{1}{(x^2)(x^4-x^3)}y^4$		
	After substituting the values							
	Log47 = 1.0		ho voluo	of tand E	valuate <i>tan</i> 6	7°20′		
	θ	65°		66°	67°	68°	69°	7
	$tan\theta$	2.144		2.2460	2.3559	2.4751	2.6051	1
1	The differen			2.2 100	2.5555	2.1731	2.0021	
	θ	$Y = tan\theta$	Δy	$\Delta^2 y$	Δ^3 y	Δ^4 y		
	65^{0}	2.1445	0.1015	0.0884	0.0023	0.0078		
	66 ⁰	2.2460	0.1099	0.0107	0.0101			
	67 ⁰	2.3559	0.1192	0.0208				
	680	2.4751	0.1300					
	690	2.6051						
	T-1:: (50 - (65020' 650)/10 (70 2222 650 2 2222							
	_	Taking $x_0 = 65^0$, $u = (65^020^{\circ}-65^0)/1^0 = 67^0.3333-65^0 = 2.3333$						
		$\therefore \tan 67^{0.20} = \sum_{0}^{4} \frac{u^{r}}{r!} \Delta^{r} y_{0}$						
	= 2	2.1445+(2.3	333)(0.10	$(15)+\frac{(2.133)}{}$	$\frac{3)(1.3333)}{2!}(0.00)$	(2.1333)(1.1333)	$\frac{3333)(0.3333)}{31}(0.1)$	0023)+
	(2.13	333)(1.3333)(0 4!	.3333)(-0.6	6667) (0 007	8)		J.	
		37296		(0.007	~ <i>,</i>			
	If we take x		7.3333-67	-0 3333				
	II WE LAKE X		1	-0.3333	(0.3333)(=0	.6667)(0.0208)		
	⊥ ∴ tan 6′	19.20 = 2.34	\59±(() 33	K331(A) 119	7)+ \\\	 (0 0208)		

	= 2.3932	$\overline{}$				
	Correct value is 2.3945					
f.	From the table of Bessel function $J_n(1)$, estimate the value of $J_3(1)$					
	" - - - " - - - -					
	$J_n(1)$ -0.4401 0.0447 0.4311 0.6694 0.7652 0.7522 0.6714 0.5587 0.4401					
	Use Newton's backward interpolation formula.					
	ose neman s cuermana interpolation formana.					
3.	Attempt <u>any three</u> of the following:	15				
a.	Solve the following simultaneous equations by Gauss – Jordan elimination method:					
	$2x_1 + 6x_2 - x_3 = -14$					
	$5x_1 - x_2 + 2x_3 = 29$					
	$x_3 - 3x_1 - 4x_2 = 4$					
A	$[2 \ 6 \ -1][x1][-14]$					
	$\begin{bmatrix} 2 & 6 & -1 \\ 5 & -1 & 2 \\ 1 & -3 & -4 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} -14 \\ 29 \\ 4 \end{bmatrix}$					
	$\begin{bmatrix} 1 & -3 & -4 \end{bmatrix} \begin{bmatrix} x3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$					
	Final solution is					
	$x_1=3.8620$ $X_2=-3.0689$					
	X3=3.3103					
b.	Solve the following simultaneous equations by Gauss – Seidel method:					
	$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$					
	$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$					
	$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$					
A	X1=(7.85+0.1x2+0.2x3)/3	1				
	X2=(-19.3-0.1x1+0.3x3)/7					
	X3 = (71.4 - 0.3x1 + 0.2x2)/10					
	First iteration:					
	X1=2.6166					
	X2=-2.7945 X2=7.0056					
	X3=7.0056 Second Iteration:					
	X1=2.9905					
	X2=-2.4996					
	X3=7.0002					
c.	For the set of points $(0, 2)$, $(2, -2)$, $(3, -1)$, evaluate $\left(\frac{dy}{dx}\right)_2$					
d.	Evaluate $\int_{1}^{2} \frac{1 - e^{-x}}{x} dx$ using trapezoidal rule and Simpson's 3/8 rule.					
	Let n =5					
	Hence $h = \frac{(2-1)}{5} = 0.2$					
	X0=1 1.2 1.4 1.6 1.8 2.0					
	Y0=0.6321 Y1=0.5823 Y2=0.5381 Y3=0.4988 Y4=0.4637 Y5=0.4323	1				
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1				
	Trapezoidal Rule					

	$\int_{0}^{x_{n}} y dx = \frac{h}{2} [y_{0} + 2 (y_{1} + y_{2} + \dots + y_{n-1}) + y_{n}],$	
	= 0.51674	
	By Simpson's 3/8 th rule = 0.5110725	
e.	Solve $\frac{dy}{dx} = x + y$; y(1) = 1 for the interval 1 (0.1) 1.2, using method of Taylor series.	
A	Y0=x0=1 X1=1.1 y1=?	
	X2=1.2 y2=? h=0.1	
	y'=x+y y'0=2 y''=1+y' y''0=3 y'''=y'' y'''0=3 y ^{iv} =y''' y ^{iv} 0=3	
	$y'''=y''$ $y'''_0=3$ $y^{iv}_0=3$	
	hence by Taylor series $y(1.1) = y_0 + \frac{hy'_0}{1} + \frac{hy''_0}{2!} + \frac{hy'''_0}{3!} + \frac{hy^{iv}}{4!} + \dots$	
	Y(1.1)=1.2155 Y(1.2)=1.3486	
f.	Solve $\frac{dy}{dx} = \frac{y - x}{y}$, where y(0) = 1, to find y(0.1) using Runge-Kutta method.	
A	$f(x,y) = \frac{y-x}{y+x}$	
	$\begin{array}{ccc} x_0=0 & y_0=1 \\ h=0.1 & \end{array}$	
	$k_1=h.f(x0,y0)=0.1f(0,1)$ $k_1=0.1$	
	$k_2 = hf(x_0 + \frac{h}{2}, y_0 + k_1)$	
	k ₂ =0.1 f(0.05,0.2) k ₂ =0.06	
	$k = \frac{1}{2}(k_1 + k_2)$	
	$k=0.08$ $y_1=y_0+k$	
	$y_1 = 1 + 0.08$	
	$y_1=1.08$ at $x_1=0.1$	
4.	Attempt any three of the following:	15
a	Fit a straight line to the x and y values in the two rows:	
	x 1 2 3 4 5 6 7 y 0.5 2.5 2.0 4.0 3.5 6.0 5.2	
	<u> </u>	
A	M=7 which is odd	
	Let three required set line for best fit be	
	Y=a+bx1	
	Normal equations are $\Sigma v = ma + b\Sigma x$ 2	

	er the tab	le						
no								
X	Y	xy	X	2				
1	0.5	0.5						
2	2.5	5.0						
3	2.0	6.0						
4	4.0	16		5				
5	3.5	17						
6	6.0	36						
7	5.2	36						
$\sum x = 2$				$X^2=140$				
			-j -1-0 <u>/</u> _	,11 1.0				
Substit	uting in e	quation (2) & (3) we	e get				
23.7=7	-	quuiton (800				
	28a+140b)						
	g we get							
a=0.01	, ,							
b=0.84								
	ed straigh	t line is						
_	45+0.842							
•			oola for the	following:				
	Х	2.5		3.5 4	4.5	5	5.5	
	У	4.32		5.27 5.47			7.23	
	I	I	1					
The equ	uation of	second de	egree parab	ola is given	by			
The equ		second de	egree parab	oola is given	by			
Y=a+b	$x+cx^2$		egree parab	oola is given	by			
Y=a+b Norma Σy=ma	x+cx² I equation ı+b∑x+c∑	is are $\sum_{i=1}^{\infty} x^2 \dots$	(2	2)	by			
Y=a+b Norma ∑y=ma ∑xy=a	x+cx ² I equation a+b∑x+c∑ ∑x+b∑x ² .	as are $\sum x^2 \dots + c \sum x^3$.	(2	2)	by			
Y=a+b Norma ∑y=ma ∑xy=a	x+cx ² I equation a+b∑x+c∑ ∑x+b∑x ² .	as are $\sum x^2 \dots + c \sum x^3$.		2)	by			
Y=a+b Norma ∑y=ma ∑xy=a	$x+cx^2$ I equation $a+b\sum x+c\sum x+b\sum x^2$ $a\sum x^2+\sum x^3$	as are $\sum x^2 \dots + c \sum x^3$.	(2	2)	by			
$Y=a+b$: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$	$x+cx^2$ I equation $a+b\sum x+c\sum x+b\sum x^2$ $a\sum x^2+\sum x^3$	as are $\sum x^2 \dots + c \sum x^3$.	(2	2)	by xy	X^2y	7	
Y=a+b Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m	$x+cx^{2}$ I equation $a+b\sum x+c\sum x+b\sum x^{2}$ $a\sum x^{2}+\sum x^{3}$ $a\sum x^{2}+\sum x^{3}$	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots$	(2	2) .(3)		X ² y 27	_	
$Y=a+b$: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $=7$ y	as are $\sum x^2 \dots +c \sum x^3 \dots +c \sum x^4 \dots$	(2) (4)	2) .(3)	xy			
$Y=a+b$ Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m x 2.5	$x+cx^2$ I equation $x+b\sum x+c\sum x+b\sum x^2$ $x+b\sum x^2+\sum x^3$ $x=7$ y y y y y y	as are $\sum x^{2} \dots + c\sum x^{3} \dots + c\sum x^{4} \dots$ $X^{2} = 6.25$	(4) X ³ 15.625	2) .(3) X^4 39.0625	xy 10.8	27		
$Y=a+b$ Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m x 2.5 3	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $x+b\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{2}+$	as are $\sum x^{2} + c \sum x^{3} + c \sum x^{4}$ $X^{2} = 6.25$	(4) X ³ 15.625 27	2) .(3) X^4 39.0625 81	xy 10.8 14.49	27 43.47		
Y=a+b; Norma: \[\sum y=ma \) \[\sum xy=a \) \[\sum x^2 y=a \] Here m \[\sum \) \[\sum 2.5 \] \[\sum 3.5 \] \[\sum 4 \]	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $x+b\sum x^{2}+\sum x^{3}$ $x=7$ y	as are $\sum_{x} x^{2} \dots + c \sum_{x} x^{3} \dots + c \sum_{x} x^{4} \dots = \sum_{x} x^{4} \dots = \sum_{x} x^{4} \dots = \sum_{x} x^{2} \dots = \sum$	(4) X ³ 15.625 27 42.875 64	2) .(3) X^4 39.0625 81 150.0625 256	xy 10.8 14.49 18.445 21.88	27 43.47 64.5575 87.52		
Y=a+b: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{3.5}{4}$ $\frac{4}{4.5}$	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $x+b\sum x^{2}+\sum x^{3}$ $x+cx^{2}$ $x+$	as are $\sum_{x} x^{2} \dots + c \sum_{x} x^{3} \dots + c \sum_{x} x^{4} \dots$ $X^{2} = 6.25$ $9 = 12.25$ $16 = 20.25$	(4) X ³ 15.625 27 42.875 64 95.125	2) .(3) X^4 39.0625 81 150.0625 256 410.0625	xy 10.8 14.49 18.445 21.88 28.17	27 43.47 64.5575 87.52 126.765		
Y=a+b: Norma: $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m x 2.5 3 3.5 4 4.5 5	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x=7$ y	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots$ $X^2 \qquad 6.25 \qquad 9 \qquad 12.25 \qquad 16 \qquad 20.25 \qquad 25 \qquad 25$	(4) X ³ 15.625 27 42.875 64 95.125 125	2) .(3) X ⁴ 39.0625 81 150.0625 256 410.0625 625	xy 10.8 14.49 18.445 21.88 28.17 33.95	27 43.47 64.5575 87.52 126.765 169.75		
Y=a+b: Norma: $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $x+b\sum x^{2}+\sum x^{3}$ $x+cx^{2}$ $x+$	as are $\sum_{x} x^{2} \dots + c \sum_{x} x^{3} \dots + c \sum_{x} x^{4} \dots$ $X^{2} = 6.25$ $9 = 12.25$ $16 = 20.25$	(4) X ³ 15.625 27 42.875 64 95.125	2) .(3) X^4 39.0625 81 150.0625 256 410.0625	xy 10.8 14.49 18.445 21.88 28.17	27 43.47 64.5575 87.52 126.765		
Y=a+b: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$ $\frac{5}{5.5}$	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{3}$ $x+b\sum x^{2}+\sum x^{3}$ $x+cx^{2}$	as are $\sum_{x} x^{2} \dots + c \sum_{x} x^{3} \dots + c \sum_{x} x^{4} \dots$ $X^{2} = 6.25$ $9 = 12.25$ $16 = 20.25$ $25 = 30.25$	(4) X ³ 15.625 27 42.875 64 95.125 125 166.375	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	2v-727 7	7
Y=a+b; Norma: $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$ $\frac{5}{5.5}$ $\sum x=28$	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x=7$ y	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots = \sum x$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2) .(3) X ⁴ 39.0625 81 150.0625 256 410.0625 625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b; Norma: $\sum y=ma$ $\sum xy=a$; $\sum x^2y=a$; Here m: x: 2.5: 3: 3.5: 4: 4.5: 5: 5: 5: 5: Substitt	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x=7$ y	as are $\sum x^2 \dots +c\sum x^3 \dots +c\sum x^4 \dots$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$ $\frac{5}{5.5}$ $\sum x=28$ Substitt $\frac{4}{40.17}$	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x=7$ y	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots +$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075] - - - - - - - - - - - - - - - - - - -	7
Y=a+b: Norma: $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$ $\frac{5}{5.5}$ $\sum x=28$ Substitt $\frac{4}{40.17}$ = $\frac{1}{167.5}$ =	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}$ $\sum x+b\sum x^{3}$ $\sum x^{2}+\sum x^{3}$ $\sum x^{3}+\sum $	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots +$	$\begin{array}{c} \dots \dots$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	2 ² y=737.7	7
Y=a+b; Norma: $\sum y=ma$ $\sum xy=a$; $\sum x^2y=a$ Here m: x 2.5 3 3.5 4 4.5 5 5.5 $\sum x=28$ Substitt 40.17=167.5=1737.775	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x=7$ y	as are $\sum_{x}^{2} x^{2} \dots$ $+c\sum_{x}^{3} x^{3} \dots$ $+c\sum_{x}^{3} x^{4} \dots$ $x^{2} \dots$ $6.25 \dots$ $9 \dots$ $12.25 \dots$ $16 \dots$ $20.25 \dots$ $25 \dots$ $30.25 \dots$ $.17 \sum_{x}^{2} x^{2} \dots$ $.3,4 \text{ we g}$ $19c \dots$ $0+532c \dots$ $32b+2476 \dots$	$\begin{array}{c cccc} & & & & & & & & & \\ & & & & & & & & \\ \hline & & & &$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b: Normal \sum y=mal \sum xy=al \sum x²y=al \sum x²y=al Here m x 2.5 3 3.5 4 4.5 5 5.5 \sum x=28 Substitt 40.17= 167.5= 737.77= a=2.75:	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $x+c\sum x+c\sum x+c\sum x+c\sum x+c\sum x^{3}$ $x+cx^{2}$ $x+cx^{2}$ $x+cx^{2}$ I equation $x+cx^{2}$ $x+cx^{2$	as are $\sum_{x}^{2} x^{2} \dots$ $+c\sum_{x}^{3} x^{3} \dots$ $+c\sum_{x}^{3} x^{4} \dots$ $x^{2} \dots$ $6.25 \dots$ $9 \dots$ $12.25 \dots$ $16 \dots$ $20.25 \dots$ $25 \dots$ $30.25 \dots$ $.17 \sum_{x}^{2} x^{2} \dots$ $.3,4 \text{ we g}$ $19c \dots$ $0+532c \dots$ $32b+2476 \dots$	$\begin{array}{c cccc} & & & & & & & & & \\ & & & & & & & & \\ \hline & & & &$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$ $\frac{5}{5}$ $\frac{5}{5.5}$ $\sum x=28$ Substitute 40.17=167.5=1737.77=122.75: y=a+bx	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+$	Is are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots +$	$\begin{array}{c} \dots \dots$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	2y=737.7	7
Y=a+b: Norma: $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m x 2.5 3 3.5 4 4.5 5 5.5 $\sum x=28$ Substitt 40.17= 167.5= 737.77: a=2.75: y=a+bx y=2.75:	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $\sum x^{2}+\sum x^{3}$ $=7$ y 4.32 4.83 5.27 5.47 6.26 6.79 7.23 $2y=40$ $2x+28b+1$	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots +$	$\begin{array}{c} \dots \dots$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m x 2.5 3 3.5 4 4.5 5 5.5 $\sum x=28$ Substitt $40.17=$ $167.5=$ $737.77=$ $a=2.75:$ $y=a+bx$ $y=2.75:$ is the re-	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $\sum x^{2}+\sum x^{3}$ $=7$ y 4.32 4.83 5.27 5.47 6.26 6.79 7.23 5.47 6.26 6.79 7.23 5.47 5.4	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots + c \sum x^2 \dots +$	$\begin{array}{c c}(4) \\ \hline X^3 \\ 15.625 \\ 27 \\ 42.875 \\ 64 \\ 95.125 \\ 125 \\ 166.375 \\ =119 \sum x^3 = x$	$\begin{array}{c c} 2) \\ .(3) \\ \hline X^4 \\ 39.0625 \\ 81 \\ 150.0625 \\ 256 \\ 410.0625 \\ 625 \\ 915.0625 \\ \hline \\ 532 \ \sum x^4 = 24 \\ \hline \end{array}$	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b: Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m x 2.5 3 3.5 4 4.5 5 5.5 $\sum x=28$ Substitt 40.17= 167.5=: 737.77: a=2.75: y=a+bx y=2.75: is the re-	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $\sum x^{2}+\sum x^{3}$ $=7$ y 4.32 4.83 5.27 5.47 6.26 6.79 7.23 5.47 6.26 6.79 7.23 5.47 5.4	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots + c \sum x^2 \dots +$	$\begin{array}{c c}(4) \\ \hline X^3 \\ 15.625 \\ 27 \\ 42.875 \\ 64 \\ 95.125 \\ 125 \\ 166.375 \\ =119 \sum x^3 = x$	2) .(3) X^4 39.0625 81 150.0625 256 410.0625 625 915.0625	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	² y=737.7	7
Y=a+b; Normal $\sum y=ma$ $\sum xy=a$ $\sum x^2y=a$ Here m $\frac{x}{2.5}$ $\frac{3}{3.5}$ $\frac{4}{4.5}$ $\frac{5}{5.5}$ $\sum x=28$ Substitt $\frac{40.17}{167.5}$ $\frac{737.77}{167.5}$ $\frac{3}{4}$ $\frac{4}{4.5}$ $\frac{5}{5.5}$	$x+cx^{2}$ I equation $x+b\sum x+c\sum x+b\sum x^{2}$ $\sum x+b\sum x^{2}+\sum x^{3}$ $\sum x^{2}+\sum x^{3}$ $=7$ y 4.32 4.83 5.27 5.47 6.26 6.79 7.23 5.47 6.26 6.79 7.23 5.47 5.4	as are $\sum x^2 \dots + c \sum x^3 \dots + c \sum x^4 \dots + c \sum x^2 \dots +$	$\begin{array}{c c}(4) \\ \hline X^3 \\ 15.625 \\ 27 \\ 42.875 \\ 64 \\ 95.125 \\ 125 \\ 166.375 \\ =119 \sum x^3 = x$	2) .(3) $ \begin{array}{r} X^4 \\ 39.0625 \\ 81 \\ 150.0625 \\ 256 \\ 410.0625 \\ 625 \\ 915.0625 \\ \end{array} $ 532 $\sum x^4 = 24$	xy 10.8 14.49 18.445 21.88 28.17 33.95 39.765	27 43.47 64.5575 87.52 126.765 169.75 218.7075	2y=737.7	7

using initial guesses $a_0 = 1$ and $a_1 = 1$. (Use Gauss Newton Method)

Solution. The partial derivatives of the function with respect to the parameters are

$$\frac{\partial f}{\partial a_0} = 1 - e^{-a_1 x} \tag{E17.9.1}$$

and

$$\frac{\partial f}{\partial a_1} = a_0 x e^{-a_1 x} \tag{E17.9.2}$$

Equations (E17.9.1) and (E17.9.2) can be used to evaluate the matrix

$$[Z_0] = \begin{bmatrix} 0.2212 & 0.1947 \\ 0.5276 & 0.3543 \\ 0.7135 & 0.3581 \\ 0.8262 & 0.3041 \\ 0.8946 & 0.2371 \end{bmatrix}$$

This matrix multiplied by its transpose results in

$$[Z_0]^T[Z_0] = \begin{bmatrix} 2.3193 & 0.9489 \\ 0.9489 & 0.4404 \end{bmatrix}$$

which in turn can be inverted to yield

$$\begin{bmatrix} [Z_0]^T [Z_0] \end{bmatrix}^{-1} = \begin{bmatrix} 3.6397 & -7.8421 \\ -7.8421 & 19.1678 \end{bmatrix}$$

The vector $\{D\}$ consists of the differences between the measurements and the model predictions,

_

$$\{D\} = \begin{cases} 0.28 - 0.2212 \\ 0.57 - 0.5276 \\ 0.68 - 0.7135 \\ 0.74 - 0.8262 \\ 0.79 - 0.8946 \end{cases} = \begin{cases} 0.0588 \\ 0.0424 \\ -0.0335 \\ -0.0862 \\ -0.1046 \end{cases}$$

It is multiplied by $[Z_0]^T$ to give

$$[Z_0]^T \{D\} = \begin{bmatrix} -0.1533 \\ -0.0365 \end{bmatrix}$$

The vector $\{\Delta A\}$ is then calculated by solving Eq. (17.35) for

$$\Delta A = \begin{cases} -0.2714 \\ 0.5019 \end{cases}$$

which can be added to the initial parameter guesses to yield

$${ a_0 \\ a_1 } = { 1.0 \\ 1.0 } + { -0.2714 \\ 0.5019 } = { 0.7286 \\ 1.5019 }$$

Thus, the improved estimates of the parameters are $a_0 = 0.7286$ and $a_1 = 1.5019$. The new parameters result in a sum of the squares of the residuals equal to 0.0242. Equation (17.36) can be used to compute ε_0 and ε_1 equal to 37 and 33 percent, respectively. The computation would then be repeated until these values fell below the prescribed stopping criterion. The final result is $a_0 = 0.79186$ and $a_1 = 1.6751$. These coefficients give a sum of the squares of the residuals of 0.000662.

				1
d	Maximize	50x+100y subject	$to 10x + 5y \le 2500, 4x + 10y \le 2000, x + 1.5y \le 450$ and	Γ
	$x \ge 0, y \ge 0$			
A	Maximize Z= :	50x + 100y		
	Subject to			
	$10x + 5y \le 250$	0(1)		

$$4x+10y \le 2000$$
(2)

And $x \ge 0, y \ge 0$

Convert the given constraints into equations 10x+5y=2500, 4x+10y=2000, X+1.5y=450

Consider 10x+5y=2500 we get

X	0	250
У	500	0

Consider 4x+10y=2000 we get

X	0	500
у	200	0

Consider X+1.5y=450 we get

X	0	450
у	300	0

Feasible region is ABCDA

A(0,0),B(0,200),C(200,110) D(250,0)

Points	Z=50x+100y
A	0
В	20000
С	21000
D	12500

Optimal Value of z is at C

X=200 and Y=110 is optimal solution

A firm makes two types of furniture – chairs and tables. The contribution for each product as calculated by the accounting department is Rs. 20 per chair and Rs. 30 per table. Both products are processed on three machines M_1 , M_2 and M_3 . The time required in hours by each product and total time available in hours per week on each machine are as follows:

MACHINE	CHAIR	TABLE	AVAILABLE TIME
M_1	3	3	36
M_2	5	2	50
M_3	2	6	60

How should the manufacturer schedule his production in order maximize contribution?

A Maximize Z=20x+30y

Subject to

 $3x+3y \le 36$

 $5x+2y \le 50$

 $2x+6y \le 60$

Non Negative constraints $x \ge 0, y \ge 0$

 $3x+3y \le 36$

 $5x+2y \le 50$

 $2x+6y \le 60$

 X
 0
 12

 y
 12
 0

X	0	10
у	25	0

X	0	30
у	10	0

	05-10				
	March 1				
	2017				
	15-1				
	Oh w				
	10 10-2				
	- 11/25	1			
	2 1/1/19	K . T	12		
	1 1000		-		
	5 50	19 15 5.0			
	-				
	W	20			
	Vertex Z=20x	+30y			
	O=(0,0) 0				
	A=(0,10) 300				
	B=(5,8) 340 C=(4,5) 230				
	() /				
	, , ,	on come unto point h	-(58) as v-5 and v-8		
f	The maximum contribution	on come upto point be	of vitamin 50 units of	minerals and 1400 calories a	
1	An aged person must receive 4000 units of vitamin, 50 units of minerals and 1400 calories a				
	day. A dietician advises to thrive on two foods F1 and F2 that cost Rs 4 and Rs 2 respectively per unit of food. It one unit of F1 contains 200 units of vitamins, 1 unit of mineral and 40 calories				
	and one unit of F2 Contains 100 units of vitamins 2 units of minerals and 40 calories, formulate				
A	a linear programming model to minimize the cost of diet.				
, A	Product	Food F1	Food F2	Requirements	
	Vitamins	200	100 F2	4000	
	Minerals	1	2	50	
	Calories	40	40	1400	
	Cost/Units	4	2		
	Z=4x+2y				
	Subject to				
	$200x+100y \ge 4000$				
	$x+2y \ge 50$				
	40x+40≥1400				
	x,y≥0				
_	A444 414	L - F-11			15
5.					15
a.	The diameter of an electric cable; say X, is assumed to be a continuous random variable with				
	$p.d. f. f(x) = 6x (1 - x), 0 \le x \le 1.$				
	(i) Check that above is p.d.f, (ii) Determine a number b such that P (Y < b) = P (Y > b)				
Α	(ii) Determine a number b such that $P(X < b) = P(X > b)$				
Α	a) f(w) ((1)	0//1			
	a) $f(x) = 6x(1-x), 0 \le x \le 1$				
	(i) $f(x) = 6x(1-x)$				
	$\int_a^b f(x)dx = \int_0^1 6x(1-x)dx$				
	$= \int_0^1 (6x - 6x^2) dx$				
	$= \int_0^1 (6x - 6x) dx$ $= 1$				
	-				
	$\therefore pdf = 1$				
	f(x) is pdf.				
	1				

	b) $P(x < b) = \text{Integral } 0 \text{ to } b \int 6x(1-x) dx$				
	$P(x > b) = \text{integral b to } 1 \int 6x(1-x) dx$				
	, , ,				
	$\int 6x(1-x) dx = 3x^2 - 2x^3$				
	$3b^2-2b^3 = [3(1)^2-2(1)^3 - 3b^2+2b^3]$				
	$3b^2-2b^3 = [3(1) \ 2-2(1) \ 3-3b \ 2+2b \ 3]$ $3b^2-2b^3 = [1-3b^2+2b^3]$				
	$6b^2 - 4b^3 - 1 = 0$				
	00 2 - 40 3-1-0				
	b=1/2				
b.	Define and explain the concept of probability density function.				
A	Where the continuous probability distribution takes place called as probability distribution function.				
A	Let X be a continuous random variable. The function $f(X)$ is called the probability density function of x,				
	if it satisfies the following				
	i) $f(x) \ge 0$ $x \in R$				
	ii) $\int_{-\infty}^{\infty} f(x) dx$				
	$\int_{-\infty}^{\infty} f(x) dx$				
	Note:				
	i) If x takes in a <x </x b then the function f(x) is such that				
	ii) $f(x) > 0$ for $a < x < b$				
	iii) $\int_{a}^{b} f(x) dx = 1$				
	-u				
	iv) if (c,d) is an interval contained (a,b) then				
	$P(c < x < d) = \int_{c}^{d} f(x) dx \text{ also } P(c \le x \le d) = P(C < x \Sigma d)$				
	$P(C \le x \le d) = \int_{c}^{d} f(x) dx$				
	P(X=c) = 0 = P(X=d)				
	··· 1 (X-C) -0-1 (X-u)				
c.	The probability mass function of a random variable X is zero except at the points $i = 0, 1, 2$. At				
	these points it has the values $p(0) = 3c^3$, $p(1) = 4c - 10c^2$, $p(2) = 5c - 1$ for some $c > 0$.				
	(i) Determine the value of c.				
	(ii) Compute the following probabilities, $P(X < 2)$ and $P(1 < X \le 2)$.				
	(iii) Describe the distribution function and draw its graph.				
	(iv) Find the largest x such that $F(x) < \frac{1}{2}$.				
	(v) Find the smallest x such that $F(x) \ge \frac{1}{2}$.				
^	(*/ * Ind the shall black built that (*/) = 3'				
A					

Solution Given:

$$P(0) = 3a^3$$
, $P(1) = 4a - 10a^2$ and $P(2) = 5a - 1$

and 0 for all the other values

(i) We know that if p(x) is a PMF, then $\sum_{x} P(x) = 1$

$$P(0) + P(1) + P(2) = 3a^3 + 4a - 10a^2 + 5a - 1 = 1$$

$$3a^3 - 10a^2 + 9a - 2 = 0$$

$$(a - 1)(3a^2 - 7a + 2) = 0$$

$$(a - 1)(3a - 1)(a - 2) = 0$$

$$\Rightarrow$$
 $a = 1, 2, \frac{1}{3}$

If a = 1, then P(0) = 3 > 1, which is not possible. Similarly, $a \ne 2$

$$a = \frac{1}{3}$$

$$P(0) = 3\left(\frac{1}{3}\right)^3 = \frac{1}{9}$$

$$P(1) = 4a - 10a^2 = \frac{4}{3} - \frac{10}{9} = \frac{2}{9}$$

$$P(2) = 5a - 1 = \frac{5}{3} - 1 = \frac{2}{3} = \frac{6}{9}$$

The probability distribution function is

x	0	1	2
P(X = x)	$\frac{1}{0}$	$\frac{2}{9}$	6

** Consider a as c

(ii)
$$P(X < 2) = P(X = 0) + P(X = 1) = \frac{1}{9} + \frac{2}{9} = \frac{3}{9} = \frac{1}{3}$$

 $P(1 < X \le 2) = P(X = 2) = \frac{6}{9} = \frac{2}{3}$

(iii) The distribution function is

$$F(x) = 0, x < 0$$

$$= \frac{1}{9}, 0 \le x < 1$$

$$= \frac{3}{9}, 1 \le x < 2$$

$$= 1, x \ge 2$$

(iv) Since $F(x) = \frac{1}{3} < \frac{1}{2}$, the largest value of x for which $f(x) < \frac{1}{2}$ is x = 1.

Since $F(x) = \frac{1}{3}$ for x = 1 and F(x) = 1 for $x \ge 2$, the smallest value of x for which $f(x) \ge \frac{1}{3}$ is x = 1.

- d. What is exponential distribution? Suppose the time till death after infection with Cancer, is exponentially distributed with mean equal to 8 years. If X represents the time till death after infection with Cancer, then find the percentage of people who die within five years after infection with Cancer.
- A Exponential distribution:

The *exponential probability distribution* is a continuous probability distribution that is useful in describing the time it takes to complete some task. The pdf for an exponential probability distribution is given by formula below (where μ is the mean of the probability distribution and e = 2.71828 to five decimal places.

$$f(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}} \quad for \ x \ge 0$$

The graph for the pdf of a typical exponential distribution is shown below:

The percentage of people who die within five years after infection with cancer is

$$P(X \le 5) = 1 - e^{-\frac{5}{8}} = 1 - e^{-0.625} = 1 - 0.535 = 0.465 i.e. 46.5 \%$$

- e. The price for a litre of whole milk is uniformly distributed between Rs. 45 and Rs. 55 during July in Mumbai. Give the equation and graph the pdf for X, the price per litre of whole milk during July. Also determine the percent of stores that charge more than Rs. 54 per litre.
- A The equation of pdf is

$$f(x) = \frac{1}{55 - 45} = \frac{1}{10} = 0.1$$
 45 < x < 55
= 0 elsewhere

The pdf is shown in the figure below:

The probability P(X>54) is shaded in the figure below:

The area of the shaded region is 0.1*1 = 0.1Hence 0.10*100 = 10% of the stores charge more than Rs. 54/- per litre.

f. The monthly worldwide average number of airplane crashes of commercial airlines is 2.2. What is the probability that there will be (i)more than 2 such accidents in the next month? (ii) more than 4 such accidents in the next 2 months?

A The number of crashes over a period of time is simply a random variable with a Poisson distribution. In this case, the su of two Poisson random variables is just a new random variable with the new rate being the sum of the old rates.

a. We have that $X_1 \sim \textit{Poisson}(x_1; \lambda_1 = 2.2)$; this is just

$$P(X_1 > 2) = 1 - P(X_1 \le 2)$$

$$= 1 - \left[e^{-2.2} + 2.2e^{-2.2} + \frac{(2.2)^2 e^{-2.2}}{2!} \right]$$

$$= 0.3772$$

b. Let X_2 be the number of accidents that happen in a two month period. By additivity of the Poisson, $X_2 \sim \textit{Poisson}(x_2; \, \lambda_2 = 2.2 + 2.2)$. Thus

$$P(X_2 > 4) = 1 - P(X_2 \le 4)$$

= 0.44881619145568419